Biomimetic temperature-sensing layer for artificial skins
Abstract
Artificial membranes that are sensitive to temperature are needed in robotics to augment interactions with humans and the environment and in bioengineering to improve prosthetic limbs. Existing flexible sensors achieved sensitivities of <100 millikelvin and large responsivity, albeit within narrow (<5 kelvin) temperature ranges. Other flexible devices, working in wider temperature ranges, exhibit orders of magnitude poorer responses. However, much more versatile and temperature-sensitive membranes are present in animals such as pit vipers, whose pit membranes have the highest sensitivity and responsivity in nature and are used to locate warm-blooded prey at distance. We show that pectin films mimic the sensing mechanism of pit membranes and parallel their record performances. These films map temperature on surfaces with a sensitivity of at least 10 millikelvin in a wide temperature range (45 kelvin), have very high responsivity, and detect warm bodies at distance. The produced material can be integrated as a layer in artificial skin platforms and boost their temperature sensitivity to reach the best biological performance.
Additional Information
© 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Submitted 31 August 2016. Accepted 28 December 2016. Published 1 February 2017. We thank U. Marti (ETH Zurich) for the technical support and useful discussions. Funding: This work was supported by the Swiss National Science Foundation (grant 157162). Author contributions: R.D.G., L.B., V.C., B.M., and C.D. conceived the system and designed the research. R.D.G., L.B., and V.C. designed and performed the experiments. R.D.G. and V.C. designed the readout circuit for the electrical measurements. All authors contributed to the analysis of the data and discussions. L.B. and V.C. prepared the figures. R.D.G., V.C., L.B., and C.D. designed the supplementary movie. L.B. edited the movie. R.D.G. and C.D. wrote the manuscript. Competing interests: R.D.G., B.M., C.D., L.B., and V.C. are inventors on patent applications EP15161042.5, EP15195729.7, and PCT/EP2016/056642 that cover gel-based thermal sensors.Attached Files
Submitted - 1512.01161.pdf
Supplemental Material - 27/2.3.eaai9251.DC1/aai9251_Movie_S1.zip
Supplemental Material - 27/2.3.eaai9251.DC1/aai9251_SM.pdf
Files
Name | Size | Download all |
---|---|---|
md5:ead276db70dfda6b37e54bd5604d4a45
|
2.5 MB | Preview Download |
Additional details
- Eprint ID
- 73994
- Resolver ID
- CaltechAUTHORS:20170202-151758407
- 157162
- Swiss National Science Foundation (SNSF)
- Created
-
2017-02-02Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field