Published August 4, 2016
| Accepted Version
Journal Article
Open
Upper and lower bounds on a system's bandwidth based on its zero-value time constants
- Creators
- Hong, B.
- Hajimiri, A.
Abstract
It is shown that for systems with no zeros and no complex poles, the classical estimate of the 3 dB cutoff frequency based on the sum of the zero-value time constants (ZVTs) is always conservative. The opposite problem is also solved, whereby a non-trivial upper bound on the cutoff frequency which depends only on the sum of the ZVTs and the system's order is derived. It is demonstrated that both bounds are tight – specifically, the lower bound is approached by making one of the system's poles increasingly dominant, whereas the best possible bandwidth is achieved when all of the system's poles overlap. The impact of complex poles on the results is also discussed.
Additional Information
© 2016 Institution of Engineering and Technology. Received 12/05/2016, Published 27/06/2016.Errata
Erratum: Upper and lower bounds on a system's bandwidth based on its zero-value time constants Electronics Letters(2016),52(16):1418 http://dx.doi.org/10.1049/el.2016.2499Attached Files
Accepted Version - FinalDraft.pdf
Files
FinalDraft.pdf
Files
(183.8 kB)
Name | Size | Download all |
---|---|---|
md5:4bee6d0e964623b180bf3c566700827f
|
183.8 kB | Preview Download |
Additional details
- Eprint ID
- 71086
- Resolver ID
- CaltechAUTHORS:20161014-084018774
- Created
-
2016-10-14Created from EPrint's datestamp field
- Updated
-
2023-06-01Created from EPrint's last_modified field