Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 19, 2015 | Published + Submitted
Journal Article Open

YSOVAR: Mid-Infrared Variability in NGC 1333


As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5 um using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~ 10 X ~ 20 area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded SEDs (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2 mag; a more typical amplitude is 0.1-0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be 'dippers', where texture in the disk occults the central star, and 11 likely to be 'bursters', where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).

Additional Information

© 2015 American Astronomical Society. Received 2015 July 1; accepted 2015 August 18; published 2015 November 17. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive including, observations made by the Chandra X-ray Observatory and published previously in cited articles. This research has made use of NASA's Astrophysics Data System (ADS) Abstract Service, and of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of data products from the Two Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation. The 2MASS data are served by the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Brevis esse laboro osbcurus fio. (Horace) A. Bayo acknowledges financial support from the Proyecto Fondecyt de Iniciaciόn 11140572. H. Bouy is funded by the the Ramόn y Cajal fellowship program number RYC-2009-04497. This research has been funded by Spanish grants AYA2012-38897-C02-01, AYA2010-21161-C02-02, CDS2006-00070 and PRICIT-S2009/ESP-1496. This work used Topcat (Taylor 2005) and Stilts (Taylor 2006). Based in part on data collected at Subaru Telescope and obtained from the SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

Attached Files

Published - Rebull_2015p175.pdf

Submitted - 1508.04705v1.pdf


Files (11.0 MB)
Name Size Download all
4.2 MB Preview Download
6.7 MB Preview Download

Additional details

August 20, 2023
October 25, 2023