Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2015 | metadata_only
Journal Article

Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale


As clusters continue to grow in size and complexity, providing scalable and predictable performance is an increasingly important challenge. A crucial roadblock to achieving predictable performance is stragglers, i.e., tasks that take significantly longer than expected to run. At this point, speculative execution has been widely adopted to mitigate the impact of stragglers. However, speculation mechanisms are designed and operated independently of job scheduling when, in fact, scheduling a speculative copy of a task has a direct impact on the resources available for other jobs. In this work, we present Hopper, a job scheduler that is speculation-aware, i.e., that integrates the tradeoffs associated with speculation into job scheduling decisions. We implement both centralized and decentralized prototypes of the Hopper scheduler and show that 50% (66%) improvements over state-of-the-art centralized (decentralized) schedulers and speculation strategies can be achieved through the coordination of scheduling and speculation.

Additional Information

© 2015 ACM. We would like to thank Michael Chien-Chun Hung, Shivaram Venkataraman, Masoud Moshref, Niangjun Chen, Qiuyu Peng, and Changhong Zhao for their insightful discussions. We would like to thank the anonymous reviewers and our shepherd, Lixin Gao, for their thoughtful suggestions. This work was supported in part by National Science Foundation (NSF) with Grants (CNS-1319820, CNS-1423505).

Additional details

August 22, 2023
August 22, 2023