Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves
- Creators
- Sanders, S. J.
- Bellan, P. M.
- Stern, R. A.
Abstract
Large-amplitude drift wave fluctuations are observed to cause severe ion temperature oscillations in plasmas of the Caltech Encore tokamak [J. M. McChesney, P. M. Bellan, and R. A. Stern, Phys. Fluids B 3, 3370 (1991)]. Experimental investigations of the complete ion dynamical behavior in these waves are presented. The wave electric field excites stochastic ion orbits in the plane normal (perpendicular to) to B, resulting in rapid perpendicular to heating. Ion-ion collisions impart energy along (parallel to) B, relaxing the perpendicular to-parallel to temperature anisotropy. Hot ions with large orbit radii escape confinement, reaching the chamber wall and cooling the distribution. Cold ions from the plasma edge convect back into the plasma (i.e., recycle), causing further cooling and significantly replenishing the density depleted by orbit losses. The ion-ion collision period tau(ii)similar to Tau(3/2)/n fluctuates strongly with the drift wave phase, due to intense (approximate to 50%) fluctuations in n and Tau. Evidence for particle recycling is given by observations of bimodal ion velocity distributions near the plasma edge, indicating the presence of cold ions (0.4 eV) superposed atop the hot (4-8 eV) plasma background. These appear periodically, synchronous with the drift wave phase at which ion fluid flow from the wall toward the plasma center peaks. Evidence is presented that such a periodic heat/loss/recycle/cool process is expected in plasmas with strong stochastic heating.
Additional Information
© 1998 American Institute of Physics. Received 12 August 1997; accepted 26 November 1997. We thank Mr. F. Cosso for invaluable technical assistance. This work was supported by National Science Foundation Grant No. PHY-9413046. Sanders et al., Added discussion of "Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves" Phys. Plasmas, 6(10):4118-4119, October 1999.Attached Files
Published - SANpop98.pdf
Published - SANpop98disc.pdf
Files
Name | Size | Download all |
---|---|---|
md5:aa23de154cf528ad0982eb7a3288f1e4
|
338.7 kB | Preview Download |
md5:46cd9c586cd17c8c515a32edb831f643
|
25.6 kB | Preview Download |
Additional details
- Eprint ID
- 2191
- Resolver ID
- CaltechAUTHORS:SANpop98
- NSF
- PHY-9413046
- Created
-
2006-03-14Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field