Published July 24, 2006 | Version Published
Book Section - Chapter Open

Random Filters for Compressive Sampling and Reconstruction

Abstract

We propose and study a new technique for efficiently acquiring and reconstructing signals based on convolution with a fixed FIR filter having random taps. The method is designed for sparse and compressible signals, i.e., ones that are well approximated by a short linear combination of vectors from an orthonormal basis. Signal reconstruction involves a non-linear Orthogonal Matching Pursuit algorithm that we implement efficiently by exploiting the nonadaptive, time-invariant structure of the measurement process. While simpler and more efficient than other random acquisition techniques like Compressed Sensing, random filtering is sufficiently generic to summarize many types of compressible signals and generalizes to streaming and continuous-time signals. Extensive numerical experiments demonstrate its efficacy for acquiring and reconstructing signals sparse in the time, frequency, and wavelet domains, as well as piecewise smooth signals and Poisson processes.

Additional Information

© 2006 IEEE. Reprinted with permission. [Posted online: 2006-07-24] JAT was supported by NSF DMS grant 0503299. MBW, MFD, DB, and RGB were supported by NSF-CCF, NSF-NeTS, ONR, and AFOSR.

Attached Files

Published - TROicassp06.pdf

Files

TROicassp06.pdf

Files (200.7 kB)

Name Size Download all
md5:984d5a039215b479c0e8461d0bed7d39
200.7 kB Preview Download

Additional details

Identifiers

Eprint ID
9065
Resolver ID
CaltechAUTHORS:TROicassp06.977

Funding

NSF
Office of Naval Research (ONR)
Air Force Office of Scientific Research (AFOSR)

Dates

Created
2007-10-25
Created from EPrint's datestamp field
Updated
2022-10-05
Created from EPrint's last_modified field