Random Filters for Compressive Sampling and Reconstruction
Abstract
We propose and study a new technique for efficiently acquiring and reconstructing signals based on convolution with a fixed FIR filter having random taps. The method is designed for sparse and compressible signals, i.e., ones that are well approximated by a short linear combination of vectors from an orthonormal basis. Signal reconstruction involves a non-linear Orthogonal Matching Pursuit algorithm that we implement efficiently by exploiting the nonadaptive, time-invariant structure of the measurement process. While simpler and more efficient than other random acquisition techniques like Compressed Sensing, random filtering is sufficiently generic to summarize many types of compressible signals and generalizes to streaming and continuous-time signals. Extensive numerical experiments demonstrate its efficacy for acquiring and reconstructing signals sparse in the time, frequency, and wavelet domains, as well as piecewise smooth signals and Poisson processes.
Additional Information
© 2006 IEEE. Reprinted with permission. [Posted online: 2006-07-24] JAT was supported by NSF DMS grant 0503299. MBW, MFD, DB, and RGB were supported by NSF-CCF, NSF-NeTS, ONR, and AFOSR.
Attached Files
Published - TROicassp06.pdf
Files
Name | Size | Download all |
---|---|---|
md5:984d5a039215b479c0e8461d0bed7d39
|
200.7 kB | Preview Download |
Additional details
- Eprint ID
- 9065
- Resolver ID
- CaltechAUTHORS:TROicassp06.977
- NSF
- Office of Naval Research (ONR)
- Air Force Office of Scientific Research (AFOSR)
- Created
-
2007-10-25Created from EPrint's datestamp field
- Updated
-
2022-10-05Created from EPrint's last_modified field