Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2002 | Published
Journal Article Open

Whole mantle shear structure beneath the East Pacific Rise


We model broadband seismograms containing triplicated S, S^2, and S^3 along with ScS to produce a pure path one-dimensional model extending from the crust to the core-mantle boundary beneath the East Pacific Rise. We simultaneously model all body wave shapes and amplitudes, thereby eliminating depth-velocity ambiguities. The data consist of western North American broadband recordings of East Pacific Rise (EPR) affiliate transform events that form a continuous record section out to 82° and sample nearly the entire East Pacific Rise. The best fitting synthetics contain attenuation and small changes in lithospheric thickness needed to correct for variation in bounce point ages. The 660-km discontinuity is particularly well resolved and requires a steep gradient (4%), extending down to 745 km. We find no discernible variation in apparent depths of the 405- and 660-km discontinuities over ridge-orthogonal distances on the order of 1000 km (or 20 Ma lithosphere). Body waveform comparisons indicate that we can resolve discontinuity depths to less than ±10 km, providing an upper limit to transition zone topography. These depth estimates, in conjunction with the fan shot nature of the ray paths, lower the detection limit from S^2 precursor analysis of the lateral length scale over which short-wavelength topographic variation could occur and indicate the sub-EPR Transition Zone and upper mantle are remarkably homogeneous. The lower mantle beneath the East Pacific Rise is well modeled by PREM, with the greatest variation occurring in ScS, reflecting strong heterogeneity along the core-mantle boundary. Together, these observations require that the East Pacific Rise spreading ridge cannot be actively supplied from the local lower mantle and that tomographically imaged lateral variation beneath the ridge likely reflects lateral smearing of outlying velocity gradients. Dynamically, the transition zone therefore appears vertically decoupled from the overlying East Pacific Rise spreading system.

Additional Information

© 2002 American Geophysical Union. Received 31 January 2000; revised 25 November 2001; accepted 30 November 2001; published 28 September 2002. This work was supported under National Science Foundation grants EAR-9973191 to Melbourne and EAR-97-2508 to Helmberger. Caltech Seismological Laboratory contribution 8746.

Attached Files

Published - 2001JB000332.pdf


Files (2.1 MB)
Name Size Download all
2.1 MB Preview Download

Additional details

August 21, 2023
October 23, 2023