Published February 6, 2025 | Published
Journal Article Open

Thermalization and criticality on an analogue–digital quantum simulator

Andersen, T. I.1 ORCID icon
Astrakhantsev, N.1
Karamlou, A. H.1 ORCID icon
Berndtsson, J.1
Motruk, J.2
Szasz, A.1 ORCID icon
Gross, J. A.1 ORCID icon
Schuckert, A.3 ORCID icon
Westerhout, T.4
Zhang, Y.1
Forati, E.1
Rossi, D.2 ORCID icon
Kobrin, B.1
Paolo, A. Di1 ORCID icon
Klots, A. R.1
Drozdov, I.1, 5 ORCID icon
Kurilovich, V.1
Petukhov, A.1
Ioffe, L. B.1
Elben, A.6 ORCID icon
Rath, A.7
Vitale, V.7 ORCID icon
Vermersch, B.7 ORCID icon
Acharya, R.1
Beni, L. A.1
Anderson, K.1
Ansmann, M.1 ORCID icon
Arute, F.1
Arya, K.1
Asfaw, A.1
Atalaya, J.1
Ballard, B.1
Bardin, J. C.1, 8 ORCID icon
Bengtsson, A.1 ORCID icon
Bilmes, A.1
Bortoli, G.1 ORCID icon
Bourassa, A.1 ORCID icon
Bovaird, J.1
Brill, L.1
Broughton, M.1
Browne, D. A.1
Buchea, B.1
Buckley, B. B.1
Buell, D. A.1
Burger, T.1
Burkett, B.1 ORCID icon
Bushnell, N.1
Cabrera, A.1
Campero, J.1
Chang, H.-S.1 ORCID icon
Chen, Z.1
Chiaro, B.1
Claes, J.1 ORCID icon
Cleland, A. Y.1
Cogan, J.1
Collins, R.1
Conner, P.1
Courtney, W.1
Crook, A. L.1
Das, S.1 ORCID icon
Debroy, D. M.1
Lorenzo, L. De1
Barba, A. Del Toro1 ORCID icon
Demura, S.1 ORCID icon
Donohoe, P.1
Dunsworth, A.1
Earle, C.1
Eickbusch, A.1
Elbag, A. M.1
Elzouka, M.1
Erickson, C.1
Faoro, L.1
Fatemi, R.1
Ferreira, V. S.1
Burgos, L. Flores1
Fowler, A. G.1
Foxen, B.1 ORCID icon
Ganjam, S.1
Gasca, R.1
Giang, W.1
Gidney, C.1
Gilboa, D.1
Giustina, M.1
Gosula, R.1 ORCID icon
Dau, A. Grajales1
Graumann, D.1
Greene, A.1 ORCID icon
Habegger, S.1 ORCID icon
Hamilton, M. C.1, 9
Hansen, M.1
Harrigan, M. P.1 ORCID icon
Harrington, S. D.1 ORCID icon
Heslin, S.1, 9
Heu, P.1
Hill, G.1
Hoffmann, M. R.1
Huang, H.-Y.1
Huang, T.1
Huff, A.1
Huggins, W. J.1 ORCID icon
Isakov, S. V.1
Jeffrey, E.1
Jiang, Z.1 ORCID icon
Jones, C.1
Jordan, S.1
Joshi, C.1
Juhas, P.1 ORCID icon
Kafri, D.1
Kang, H.1
Kechedzhi, K.1 ORCID icon
Khaire, T.1
Khattar, T.1
Khezri, M.1
Kieferová, M.1, 10
Kim, S.1
Kitaev, A.1
Klimov, P.1 ORCID icon
Korotkov, A. N.1, 11
Kostritsa, F.1
Kreikebaum, J. M.1
Landhuis, D.1 ORCID icon
Langley, B. W.1
Laptev, P.1
Lau, K.-M.1
Guevel, L. Le1 ORCID icon
Ledford, J.1
Lee, J.1, 12
Lee, K. W.1
Lensky, Y. D.1
Lester, B. J.1 ORCID icon
Li, W. Y.1
Lill, A. T.1
Liu, W.1
Livingston, W. P.1 ORCID icon
Locharla, A.1
Lundahl, D.1
Lunt, A.1
Madhuk, S.1
Maloney, A.1
Mandrà, S.1 ORCID icon
Martin, L. S.1
Martin, O.1
Martin, S.1
Maxfield, C.1
McClean, J. R.1 ORCID icon
McEwen, M.1 ORCID icon
Meeks, S.1
Miao, K. C.1
Mieszala, A.1
Molina, S.1
Montazeri, S.1 ORCID icon
Morvan, A.1 ORCID icon
Movassagh, R.1
Neill, C.1 ORCID icon
Nersisyan, A.1
Newman, M.1
Nguyen, A.1
Nguyen, M.1
Ni, C.-H.1
Niu, M. Y.1
Oliver, W. D.1
Ottosson, K.1
Pizzuto, A.1
Potter, R.1
Pritchard, O.1
Pryadko, L. P.1, 11
Quintana, C.1
Reagor, M. J.1
Rhodes, D. M.1 ORCID icon
Roberts, G.1
Rocque, C.1
Rosenberg, E.1
Rubin, N. C.1 ORCID icon
Saei, N.1
Sankaragomathi, K.1 ORCID icon
Satzinger, K. J.1 ORCID icon
Schurkus, H. F.1 ORCID icon
Schuster, C.1
Shearn, M. J.1
Shorter, A.1
Shutty, N.1 ORCID icon
Shvarts, V.1
Sivak, V.1
Skruzny, J.1
Small, S.1
Smith, W. Clarke1
Springer, S.1
Sterling, G.1
Suchard, J.1
Szalay, M.1
Sztein, A.1
Thor, D.1
Torres, A.1
Torunbalci, M. M.1
Vaishnav, A.1
Vdovichev, S.1
Villalonga, B.1
Heidweiller, C. Vollgraff1 ORCID icon
Waltman, S.1
Wang, S. X.1
White, T.1
Wong, K.1
Woo, B. W. K.1 ORCID icon
Xing, C.1
Yao, Z. Jamie1
Yeh, P.1 ORCID icon
Ying, B.1
Yoo, J.1
Yosri, N.1 ORCID icon
Young, G.1
Zalcman, A.1 ORCID icon
Zhu, N.1 ORCID icon
Zobrist, N.1 ORCID icon
Neven, H.1 ORCID icon
Babbush, R.1 ORCID icon
Boixo, S.1 ORCID icon
Hilton, J.1
Lucero, E.1
Megrant, A.1 ORCID icon
Kelly, J.1 ORCID icon
Chen, Y.1 ORCID icon
Smelyanskiy, V.1
Vidal, G.1
Roushan, P.1 ORCID icon
Läuchli, A. M.13, 14
Abanin, D. A.1, 15 ORCID icon
Mi, X.1 ORCID icon
  • 1. ROR icon Google (United States)
  • 2. ROR icon University of Geneva
  • 3. ROR icon Joint Quantum Institute
  • 4. ROR icon Radboud University Nijmegen
  • 5. ROR icon University of Connecticut
  • 6. ROR icon California Institute of Technology
  • 7. ROR icon Laboratoire de Physique et Modélisation des Milieux Condensés
  • 8. ROR icon University of Massachusetts Amherst
  • 9. ROR icon Auburn University
  • 10. ROR icon University of Technology Sydney
  • 11. ROR icon University of California, Santa Barbara
  • 12. ROR icon Harvard University
  • 13. ROR icon Paul Scherrer Institute
  • 14. ROR icon École Polytechnique Fédérale de Lausanne
  • 15. ROR icon Princeton University

Abstract

Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems towards this goal requires flexible initial state preparation, precise time evolution and extensive probes for final state characterization. Here we present a quantum simulator comprising 69 superconducting qubits that supports both universal quantum gates and high-fidelity analogue evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. This hybrid platform features more versatile measurement capabilities compared with analogue-only simulators, which we leverage here to reveal a coarsening-induced breakdown of Kibble–Zurek scaling predictions in the XY model, as well as signatures of the classical Kosterlitz–Thouless phase transition. Moreover, the digital gates enable precise energy control, allowing us to study the effects of the eigenstate thermalization hypothesis in targeted parts of the eigenspectrum. We also demonstrate digital preparation of pairwise-entangled dimer states, and image the transport of energy and vorticity during subsequent thermalization in analogue evolution. These results establish the efficacy of superconducting analogue–digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.

Copyright and License

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Acknowledgement

We acknowledge useful discussions with R. Samajdar, D. A. Huse and S. Choi. A. Schuckert acknowledges support from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. J.M. acknowledges funding through SNSF Swiss Postdoctoral Fellowship, grant no. 210478. A.E. acknowledges funding by the German National Academy of Sciences Leopoldina under the grant number LPDS 2021-02 and by the Walter Burke Institute for Theoretical Physics at Caltech. Work in Grenoble is funded by the French National Research Agency through the JCJC project QRand (grant no. ANR-20-CE47-0005), Laboratoire d’excellence LANEF (grant no. ANR-10-LABX-51-01), from the Grenoble Nanoscience Foundation.

Data Availability

The data that support the findings in this study are available at Zenodo (https://doi.org/10.5281/zenodo.14060446)

Supplemental Material

Supplementary Information

The Supplementary Information includes Notes 1–13 and Figs. 1–16. In this file, we describe MPS simulations of XY model dynamics, numerical finite-size scaling analysis, alternative correlation fitting schemes and further theoretical analysis of XEB experiments, including computational complexity.

 

Peer Review File

Files

s41586-024-08460-3.pdf
Files (19.0 MB)
Name Size Download all
md5:20edb7cdf84b9ae5788ee23247bafd9e
9.1 MB Preview Download
md5:1d87cc5ad020d96a03ae69605b8cfc26
9.9 MB Preview Download

Additional details

Created:
July 10, 2025
Modified:
July 10, 2025