We explore the possibility of detecting very faint, very close-in stellar companions using large aperture ground-based telescopes and the technique of optical speckle imaging. We examine the state of high-angular-resolution speckle imaging and contrast levels being achieved using current speckle cameras on the Gemini 8 m telescope. We then explore the use of the modern image reconstruction technique—multiframe blind deconvolution (MFBD)—applied to speckle imaging from the Gemini 8 m telescope. We show that MFBD allows us to measure the flux ratio of the imaged stars to high accuracy and the reconstructed images yield higher precision astrometry. Both of these advances provide a large refinement in the derived astrophysical parameters compared with current Fourier techniques. MFBD image reconstructions reach contrast levels of ∼5 × 10−3, near the diffraction limit, to ∼10−4 about 10 away. At these deep contrast levels with angular limits starting near the 8 m diffraction limit (∼20 mas), most stellar companions to a solar-like stars can be imaged in the optical to near-IR bandpass (320–1000 nm). "To Xanadu we go..."—adapted from S. T. Coleridge.
High-contrast, High-angular-resolution Optical Speckle Imaging: Uncovering Hidden Stellar Companions
Abstract
Copyright and License
© 2024. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Acknowledgement
The observations in this paper made use of the High-Resolution Imaging instrument 'Alopeke and were obtained under Gemini LLP Proposal Number: GN/S-2021A-LP-105. 'Alopeke was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Alopeke was mounted on the Gemini North 8 m telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive and ExoFOP, which are operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Additional information was obtained from the SIMBAD database, operated at CDS, Strasbourg, France. We acknowledge support from AFOSR awards FA9550-14-1-0178 (DAH and SMJ) and FA9550-21-1-0384 (SMJ).
Facilities
Gemini:Gillett, Gemini:South
Files
Name | Size | Download all |
---|---|---|
md5:374fa1fe67e5ee62d0dd19385a59a39b
|
1.2 MB | Preview Download |
Additional details
- ISSN
- 1538-3881
- Infrared Processing and Analysis Center
- United States Air Force Office of Scientific Research
- FA9550-14-1-0178
- United States Air Force Office of Scientific Research
- FA9550-21-1-0384
- Caltech groups
- Infrared Processing and Analysis Center (IPAC)