The large number of exoplanets discovered with the Transiting Exoplanet Survey Satellite (TESS) means that any observational biases from TESS could influence the derived stellar multiplicity statistics of exoplanet host stars. To investigate this problem, we obtained speckle interferometry of 207 control stars whose properties in the TESS Input Catalog (TIC) closely match those of an exoplanetary host star in the TESS Object of Interest (TOI) catalog, with the objective of measuring the fraction of these stars that have companions within ∼12. Our main result is the identification of a bias in the creation of the control sample that prevents the selection of binaries with 01 ≲ ρ ≲ 12 and Δmag ≲3. This bias is the result of large astrometric residuals that cause binaries with these parameters to fail the quality checks used to create the TIC, which in turn causes them to have incomplete stellar parameters (and uncertainties) in the TIC. Any stellar multiplicity study that relies exclusively upon TIC stellar parameters to identify its targets will struggle to select unresolved binaries in this parameter space. Left uncorrected, this selection bias disproportionately excludes high-mass-ratio binaries, causing the mass-ratio distribution of the companions to deviate significantly from the uniform distribution expected of FGK-type field binaries. After accounting for this bias, the companion rate of the FGK control stars is consistent with the canonical 46% ± 2% rate from Raghavan et al., and the mass-ratio distribution agrees with that of binary TOI host stars. There is marginal evidence that the control-star companions have smaller projected orbital separations than TOI host stars from previous studies.
High-resolution Imaging of a TESS Control Sample: Verifying a Deficit of Close-in Stellar Companions to Exoplanet Host Stars
Abstract
Copyright and License
© 2024. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Acknowledgement
We thank the anonymous referee for an insightful report.This research has made use of the Exoplanet Follow-up Observation Program (ExoFOP; DOI: 10.26134/ExoFOP5) website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. 'Alopeke and Zorro were funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. 'Alopeke and Zorro were mounted on the Gemini North and South telescopes of the international Gemini Observatory, a program of NSF's NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea).
Files
Name | Size | Download all |
---|---|---|
md5:eca3c28b06d27c1e2002bc5a4682f241
|
53.6 MB | Preview Download |
Additional details
- ISSN
- 1538-3881
- National Aeronautics and Space Administration
- NSF's NOIRLab
- Caltech groups
- Infrared Processing and Analysis Center (IPAC)