Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 27, 2021 | Accepted Version
Report Open

Non-intersection of transient branching random walks

Abstract

Let G be a Cayley graph of a nonamenable group with spectral radius ρ<1. It is known that branching random walk on G with offspring distribution μ is transient, i.e., visits the origin at most finitely often almost surely, if and only if the expected number of offspring μ¯ satisfies μ¯≤ρ−1. Benjamini and Müller (2010) conjectured that throughout the transient supercritical phase 1<μ¯≤ρ−1, and in particular at the recurrence threshold μ¯=ρ−1, the trace of the branching random walk is tree-like in the sense that it is infinitely-ended almost surely on the event that the walk survives forever. This is essentially equivalent to the assertion that two independent copies of the branching random walk intersect at most finitely often almost surely. We prove this conjecture, along with several other related conjectures made by the same authors. A central contribution of this work is the introduction of the notion of local unimodularity, which we expect to have several further applications in the future.

Additional Information

We thank Itai Benjamini, Jonathan Hermon, Asaf Nachmias, and Elisabetta Candellero for useful discussions. In particular, we thank Asaf for discussions that led to a substantially simpler proof of Theorem 3.3. We also thank the anonymous referee for their careful reading and helpful suggestions.

Attached Files

Accepted Version - 1910.01018.pdf

Files

1910.01018.pdf
Files (285.6 kB)
Name Size Download all
md5:2b306846b7d63aca74ab5d100c29d2e4
285.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023