Generation of high-resolution surface temperature distributions
Abstract
We have performed numerical calculations to study the generation of arbitrary temperature profiles with high spatial resolution on the surface of a solid. The characteristics of steady-state distributions and time-dependent heating and cooling cycles are examined, as well as their dependence on material properties and device geometry. Ideally, low-power consumption and fast response times are desirable. The simulations show that the achievable spatial resolution is on the order of the substrate thickness and that the response time t+ depends on the width of the individual heating elements. Moreover, the rise time t+ can be significantly shortened by deposition of a thermal insulation layer, which also reduces the power consumption and increases lateral resolution.
Additional Information
©2002 American Institute of Physics. (Received 16 October 2001; accepted 8 February 2002) This project is funded by the National Science Foundation through Grant No. CTS-0088774, a Princeton University MRSEC grant (DMR-9809483), the Molecular Level Printing Program of the Defense Advanced Research Projects Agency (DARPA), and the New Jersey Commission on Science and Technology.Files
Name | Size | Download all |
---|---|---|
md5:81ea54ef095532707b427641014d8d60
|
334.1 kB | Preview Download |
Additional details
- Eprint ID
- 4992
- Resolver ID
- CaltechAUTHORS:DARjap02
- Created
-
2006-09-18Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field
- Caltech groups
- GALCIT