Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 15, 1993 | public
Journal Article

Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl

Adolphs, R. ORCID icon


The aim of this study was to examine how the functional specialization of the barn owl's auditory brainstem might correlate with histochemical compartmentalizaiton. The barn owl uses interaural intensity and time differences to encode, respectively, the vertical and azimuthal positions of sound sources in space. These two auditory cues are processed in parallel ascending pathways that separate from each other at the level of the cochlear nuclei. Sections through the auditory brainstem were stained for acetylcholinesterase (AChE) to examine whether nuclei that process different auditory cues stain differentially for this enzyme. Of the two cochlear nuclei, angularis showed more intense staining than nucleus magnocellularis. Nucleus angularis projects to all of the nuclei and subdivisions of nuclei that belong to the intensity processing pathway. Acetylcholinesterase stained all regions that contain terminal fields of nucleus angularis and thus provided discrimination between the time and intensity pathways. Moreover, staining patterns with acetylcholinesterase were complementary to those prevously reported with an anti‐calbindin antibody, which stains terminal fields of nucleus laminaris, and thus stains all the nuclei and subdivisions of nuclei that belong to the time pathway. Some of the gross staining patterns observed with AChE were similar to those reported with antibodies to glutamate decarboxylase. However, AChE is a more convenient and definitive marker in discriminating between these pathways than is calbindin or glutamate decarboxylase. Acetylcholinesterase staining of the intensity pathway in the owl may be related to encoding of sound intensity by spike rate over large dynamic ranges.

Additional Information

© 1993 Wiley‐Liss, Inc. Manuscript accepted: 13 November 1992. First published: 15 March 1993.

Additional details

August 22, 2023
October 18, 2023