Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 7, 2018 | Published + Supplemental Material
Journal Article Open

Enhanced Acidity of Acetic and Pyruvic Acids on the Surface of Water


Understanding the acid–base behavior of carboxylic acids on aqueous interfaces is a fundamental issue in nature. Surface processes involving carboxylic acids such as acetic and pyruvic acids play roles in (1) the transport of nutrients through cell membranes, (2) the cycling of metabolites relevant to the origin of life, and (3) the photooxidative processing of biogenic and anthropogenic emissions in aerosols and atmospheric waters. Here, we report that 50% of gaseous acetic acid and pyruvic acid molecules transfer a proton to the surface of water at pH 2.8 and 1.8 units lower than their respective acidity constants pK_a = 4.6 and 2.4 in bulk water. These findings provide key insights into the relative Bronsted acidities of common carboxylic acids versus interfacial water. In addition, the work estimates the reactive uptake coefficient of gaseous pyruvic acid by water to be γ_(PA) = 0.06. This work is useful to interpret the interfacial behavior of pyruvic acid under low water activity conditions, typically found in haze aerosols, clouds, and fog waters.

Additional Information

© 2018 American Chemical Society. ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Received: May 14, 2018; Revised: June 25, 2018; Published: July 5, 2018. M.I.G. thanks research funding from the National Science foundation under NSF CAREER award CHE-1255290. A.J.E. acknowledges the support by the NASA Earth and Space Science Fellowship (NESSF) Program. A.J.C. acknowledges funding from the National Science Foundation under grant AGS-1744353. The authors declare no competing financial interest.

Attached Files

Published - acs.langmuir.8b01606.pdf

Supplemental Material - la8b01606_liveslides.mp4


Files (6.9 MB)
Name Size Download all
1.3 MB Preview Download
5.6 MB Download

Additional details

August 19, 2023
October 18, 2023