The Online Knapsack Problem with Departures
Abstract
The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.
Attached Files
Accepted Version - 2209.11934.pdf
Files
Name | Size | Download all |
---|---|---|
md5:364b60662aaddf150b048546a73e8758
|
114.7 kB | Preview Download |
Additional details
- Eprint ID
- 120095
- Resolver ID
- CaltechAUTHORS:20230316-204008302
- Created
-
2023-03-16Created from EPrint's datestamp field
- Updated
-
2023-03-16Created from EPrint's last_modified field