Demonstrating a Long-Coherence Dual-Rail Erasure Qubit Using Tunable Transmons
- Creators
-
Levine, H.
- Haim, A.
- Hung, J. S. C.
- Alidoust, N.
- Kalaee, M.
- DeLorenzo, L.
-
Wollack, E. A.
- Arrangoiz-Arriola, P.
-
Khalajhedayati, A.
- Sanil, R.
- Moradinejad, H.
- Vaknin, Y.
-
Kubica, A.
- Hover, D.
-
Aghaeimeibodi, S.
- Alcid, J. A.
- Baek, C.
- Barnett, J.
- Bawdekar, K.
- Bienias, P.
- Carson, H. A.
- Chen, C.
-
Chen, L.
- Chinkezian, H.
- Chisholm, E. M.
- Clifford, A.
- Cosmic, R.
- Crisosto, N.
- Dalzell, A. M.
- Davis, E.
- D'Ewart, J. M.
- Diez, S.
- D'Souza, N.
-
Dumitrescu, P. T.
- Elkhouly, E.
- Fang, M. T.
-
Fang, Y.
- Flammia, S.
- Fling, M. J.
- Garcia, G.
- Gharzai, M. K.
-
Gorshkov, A. V.
- Gray, M. J.
- Grimberg, S.
-
Grimsmo, A. L.
- Hann, C. T.
- He, Y.
-
Heidel, S.
- Howell, S.
- Hunt, M.
- Iverson, J.
- Jarrige, I.
- Jiang, L.
-
Jones, W. M.
- Karabalin, R.
-
Karalekas, P. J.
-
Keller, A. J.
- Lasi, D.
-
Lee, M.
- Ly, V.
- MacCabe, G.
- Mahuli, N.
-
Marcaud, G.
- Matheny, M. H.
- McArdle, S.
-
McCabe, G.
- Merton, G.
- Miles, C.
- Milsted, A.
-
Mishra, A.
-
Moncelsi, L.
-
Naghiloo, M.
- Noh, K.
- Oblepias, E.
- Ortuno, G.
- Owens, J. C.
- Pagdilao, J.
- Panduro, A.
- Paquette, J.-P.
- Patel, R. N.
- Peairs, G.
- Perello, D. J.
- Peterson, E. C.
- Ponte, S.
- Putterman, H.
- Refael, G.1
- Reinhold, P.
- Resnick, R.
- Reyna, O. A.
- Rodriguez, R.
- Rose, J.
-
Rubin, A. H.
- Runyan, M.
-
Ryan, C. A.
- Sahmoud, A.
- Scaffidi, T.
- Shah, B.
- Siavoshi, S.
- Sivarajah, P.
- Skogland, T.
- Su, C.-J.
- Swenson, L. J.
- Sylvia, J.
- Teo, S. M.
- Tomada, A.
-
Torlai, G.
- Wistrom, M.
- Zhang, K.
-
Zuk, I.
- Clerk, A. A.
-
Brandão, F. G. S. L.
-
Retzker, A.
-
Painter, O.1
Abstract
Quantum error correction with erasure qubits promises significant advantages over standard error correction due to favorable thresholds for erasure errors. To realize this advantage in practice requires a qubit for which nearly all errors are such erasure errors, and the ability to check for erasure errors without dephasing the qubit. We demonstrate that a “dual-rail qubit” consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit, where transmon T₁ errors are converted into erasure errors and residual dephasing is strongly suppressed, leading to millisecond-scale coherence within the qubit subspace. We show that single-qubit gates are limited primarily by erasure errors, with erasure probability p_(erasure) = 2.19(2) × 10⁻³ per gate while the residual errors are ∼40 times lower. We further demonstrate midcircuit detection of erasure errors while introducing <0.1% dephasing error per check. Finally, we show that the suppression of transmon noise allows this dual-rail qubit to preserve high coherence over a broad tunable operating range, offering an improved capacity to avoid frequency collisions. This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
Copyright and License
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Acknowledgement
Files
Name | Size | Download all |
---|---|---|
md5:b25ee6263979e27a6d08679a5e32dc68
|
5.7 MB | Preview Download |
Additional details
- California Institute of Technology
- AWS Center for Quantum Computing
- Amazon (United States)
- Caltech groups
- Kavli Nanoscience Institute, Institute for Quantum Information and Matter, AWS Center for Quantum Computing