Algebraic Cayley Differential Space–Time Codes
- Creators
- Oggier, Frédérique
- Hassibi, Babak
Abstract
Cayley space-time codes have been proposed as a solution for coding over noncoherent differential multiple-input multiple-output (MIMO) channels. Based on the Cayley transform that maps the space of Hermitian matrices to the manifold of unitary matrices, Cayley codes are particularly suitable for high data rate, since they have an easy encoding and can be decoded using a sphere-decoder algorithm. However, at high rate, the problem of evaluating if a Cayley code is fully diverse may become intractable, and previous work has focused instead on maximizing a mutual information criterion. The drawback of this approach is that it requires heavy optimization which depends on the number of antennas and rate. In this work, we study Cayley codes in the context of division algebras, an algebraic tool that allows to get fully diverse codes. We present an algebraic construction of fully diverse Cayley codes, and show that this approach naturally yields, without further optimization, codes that perform similarly or closely to previous unitary differential codes, including previous Cayley codes, and codes built from Lie groups.
Additional Information
© Copyright 2007 IEEE. Reprinted with permission. Manuscript received August 26, 2006; revised January 16, 2007. [Posted online: 2007-04-30] This work was supported in part by the Swiss National Science Foundation under Grant PBEL2-110209 and by the National Science Foundation under Grant CCR-0133818, by Caltech's Lee Center for Advanced Networking, and by a grant from the David and Lucille Packard Foundation.Attached Files
Published - OGGieeetit07.pdf
Files
Name | Size | Download all |
---|---|---|
md5:0303700432fb6c013cdb04b770272b10
|
2.7 MB | Preview Download |
Additional details
- Eprint ID
- 8567
- Resolver ID
- CaltechAUTHORS:OGGieeetit07
- Swiss National Science Foundation (SNSF)
- PBEL2-110209
- NSF
- CCR-0133818
- Caltech's Lee Center for Advanced Networking
- David and Lucile Packard Foundation
- Created
-
2007-08-20Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field