Biologically Inspired Feedback Design for Drosophila Flight
Abstract
We use a biologically motivated model of the Drosophila's flight mechanics and sensor processing to design a feedback control scheme to regulate forward flight. The model used for insect flight is the grand unified fly (GUF) [3] simulation consisting of rigid body kinematics, aerodynamic forces and moments, sensory systems, and a 3D environment model. We seek to design a control algorithm that will convert the sensory signals into proper wing beat commands to regulate forward flight. Modulating the wing beat frequency and mean stroke angle produces changes in the flight envelope. The sensory signals consist of estimates of rotational velocity from the haltere organs and translational velocity estimates from visual elementary motion detectors (EMD's) and matched retinal velocity filters. The controller is designed based on a longitudinal model of the flight dynamics. Feedforward commands are generated based on a desired forward velocity. The dynamics are linearized around this operating point and a feedback controller designed to correct deviations from the operating point. The control algorithm is implemented in the GUF simulator and achieves the desired tracking of the forward reference velocities and exhibits biologically realistic responses.
Additional Information
© 2007 IEEE. Issue Date : 9-13 July 2007; date of Current Version : 30 July 2007. Support for this work was partially provided by AFOSR Grant FA9550-06-1-0079 as well as a Fannie and John Hertz Foundation Fellowship for S. Waydo and a National Science Foundation Graduate Fellowship for S. Fuller.Attached Files
Published - Epstein2007p84632009_American_Control_Conference_Vols_1-9.pdf
Files
Name | Size | Download all |
---|---|---|
md5:4688161ceee5587ffbcf09a0fc34d957
|
1.1 MB | Preview Download |
Additional details
- Eprint ID
- 18159
- Resolver ID
- CaltechAUTHORS:20100506-100128102
- Air Force Office of Scientific Research (AFOSR)
- FA9550-06-1-0079
- Fannie and John Hertz Foundation
- NSF Graduate Research Fellowship
- Created
-
2010-06-24Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field