Informative and non-informative decomposition of turbulent flow fields
Abstract
Not all the information in a turbulent field is relevant for understanding particular regions or variables in the flow. Here, we present a method for decomposing a source field into its informative $\boldsymbol {\varPhi }_{I}(\boldsymbol {x},t)$ and residual $\boldsymbol {\varPhi }_{R}(\boldsymbol {x},t)$ components relative to another target field. The method is referred to as informative and non-informative decomposition (IND). All the necessary information for physical understanding, reduced-order modelling and control of the target variable is contained in $\boldsymbol {\varPhi }_{I}(\boldsymbol {x},t)$ , whereas $\boldsymbol {\varPhi }_{R}(\boldsymbol {x},t)$ offers no substantial utility in these contexts. The decomposition is formulated as an optimisation problem that seeks to maximise the time-lagged mutual information of the informative component with the target variable while minimising the mutual information with the residual component. The method is applied to extract the informative and residual components of the velocity field in a turbulent channel flow, using the wall shear stress as the target variable. We demonstrate the utility of IND in three scenarios: (i) physical insight into the effect of the velocity fluctuations on the wall shear stress; (ii) prediction of the wall shear stress using velocities far from the wall; and (iii) development of control strategies for drag reduction in a turbulent channel flow using opposition control. In case (i), IND reveals that the informative velocity related to wall shear stress consists of wall-attached high- and low-velocity streaks, collocated with regions of vertical motions and weak spanwise velocity. This informative structure is embedded within a larger-scale streak–roll structure of residual velocity, which bears no information about the wall shear stress. In case (ii), the best-performing model for predicting wall shear stress is a convolutional neural network that uses the informative component of the velocity as input, while the residual velocity component provides no predictive capabilities. Finally, in case (iii), we demonstrate that the informative component of the wall-normal velocity is closely linked to the observability of the target variable and holds the essential information needed to develop successful control strategies.
Copyright and License
© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cite
Funding
This work was supported by the National Science Foundation under grant no. 2140775 and MISTI Global Seed Funds and UPM. G.A. was partially supported by the NNSA Predictive Science Academic Alliance Program (PSAAP, grant DE-NA0003993).
Data Availability
The code and examples of aIND are openly available at https://github.com/Computational-Turbulence-Group/aIND.
Files
Name | Size | Download all |
---|---|---|
md5:653bc2fe0bb52ad7a8379a5a612ec2f3
|
2.8 MB | Preview Download |
Additional details
- National Science Foundation
- 2140775
- National Nuclear Security Administration
- Predictive Science Academic Alliance Program (PSAAP) DE-NA0003993
- Available
-
2025-02-05Published online
- Caltech groups
- GALCIT
- Publication Status
- Published