Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2, 2023 | Published
Journal Article Open

Identifying glitches near gravitational-wave signals from compact binary coalescences using the Q-transform


We present a computational method to identify glitches in gravitational-wave data that occur nearby gravitational-wave signals from compact binary coalescences. The Q-transform, an established tool in LIGO-Virgo-KAGRA data analysis, computes the probability of any excess in the data surrounding a signal against the assumption of a Gaussian noise background, flagging any significant glitches. Subsequently, we perform validation tests on this computational method to ensure self-consistency in colored Gaussian noise, as well as data that contains a gravitational-wave event after subtracting the signal using the best-fit template. Finally, a comparison of our glitch identification results from real events in LIGO-Virgo's third observing run against the list of events which required glitch mitigation shows that this tool will be useful in providing precise information about data quality to improve astrophysical analyses of these events.

Additional Information

© 2023 The Author(s). Published by IOP Publishing Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. The authors would like to thank the LIGO-Virgo-KAGRA detector characterization groups for their input and suggestions during the development of this work. We thank Siddharth Soni for his comments during internal review of this manuscript. L V and D D are supported by the NSF as a part of the LIGO Laboratory. This research has made use of data or software obtained from the Gravitational Wave Open Science Center (gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration, the Virgo Collaboration, and KAGRA. LIGO Laboratory and Advanced LIGO are funded by the United States National Science Foundation (NSF) as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. The construction and operation of KAGRA are funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Japan Society for the Promotion of Science (JSPS), National Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS) and the Ministry of Science and Technology (MoST) in Taiwan. This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation, and operates under Cooperative Agreement PHY-1764464. Advanced LIGO was built under Award PHY-0823459. The authors are grateful for computational resources provided by the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY-0823459. This work carries LIGO Document Number P2200223. Data availability statement. The data that support the findings of this study are available upon reasonable request from the authors.

Attached Files

Published - Vazsonyi_2023_Class._Quantum_Grav._40_035008.pdf


Files (1.3 MB)

Additional details

August 22, 2023
October 25, 2023