Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
- Creators
- An, F. P.
- Bai, W. D.
- Balantekin, A. B.
- Bishai, M.
- Blyth, S.
- Cao, G. F.
- Cao, J.
- Chang, J. F.
- Chang, Y.
- Chen, H. S.
- Chen, H. Y.
- Chen, S. M.
- Chen, Y.
- Chen, Y. X.
- Cheng, J.
- Cheng, J.
- Cheng, Y.-C.
- Cheng, Z. K.
- Cherwinka, J. J.
- Chu, M. C.
- Cummings, J. P.
- Dalager, O.
- Deng, F. S.
- Ding, Y. Y.
- Diwan, M. V.
- Dohnal, T.
- Dolzhikov, D.
- Dove, J.
- Dugas, K. V.
- Duyang, H. Y.
- Dwyer, D. A.
- Gallo, J. P.
- Gonchar, M.
- Gong, G. H.
- Gong, H.
- Gu, W. Q.
- Guo, J. Y.
- Guo, L.
- Guo, X. H.
- Guo, Y. H.
- Guo, Z.
- Hackenburg, R. W.
- Han, Y.
- Hans, S.
- He, M.
- Heeger, K. M.
- Heng, Y. K.
- Hor, Y. K.
- Hsiung, Y. B.
- Hu, B. Z.
- Hu, J. R.
- Hu, T.
- Hu, Z. J.
- Huang, H. X.
- Huang, J. H.
- Huang, X. T.
- Huang, Y. B.
- Huber, P.
- Jaffe, D. E.
- Jen, K. L.
- Ji, X. L.
- Ji, X. P.
- Johnson, R. A.
- Jones, D.
- Kang, L.
- Kettell, S. H.
- Kohn, S.
- Kramer, M.
- Langford, T. J.
- Lee, J.
- Lee, J. H. C.
- Lei, R. T.
- Leitner, R.
- Leung, J. K. C.
- Li, F.
- Li, H. L.
- Li, J. J.
- Li, Q. J.
- Li, R. H.
- Li, S.
- Li, S. C.
- Li, W. D.
- Li, X. N.
- Li, X. Q.
- Li, Y. F.
- Li, Z. B.
- Liang, H.
- Lin, C. J.
- Lin, G. L.
- Lin, S.
- Ling, J. J.
- Link, J. M.
- Littenberg, L.
- Littlejohn, B. R.
- Liu, J. C.
- Liu, J. L.
- Liu, J. X.
- Lu, C.
- Lu, H. Q.
- Luk, K. B.
- Ma, B. Z.
- Ma, X. B.
- Ma, X. Y.
- Ma, Y. Q.
- Mandujano, R. C.
- Marshall, C.
- McDonald, K. T.
- McKeown, R. D.
- Meng, Y.
- Napolitano, J.
- Naumov, D.
- Naumova, E.
- Nguyen, T. M. T.
- Ochoa-Ricoux, J. P.
- Olshevskiy, A.
- Park, J.
- Patton, S.
- Peng, J. C.
- Pun, C. S. J.
- Qi, F. Z.
- Qi, M.
- Qian, X.
- Raper, N.
- Ren, J.
- Morales Reveco, C.
- Rosero, R.
- Roskovec, B.
- Ruan, X. C.
- Russell, B.
- Steiner, H.
- Sun, J. L.
- Tmej, T.
- Treskov, K.
- Tse, W.-H.
- Tull, C. E.
- Tung, Y. C.
- Viren, B.
- Vorobel, V.
- Wang, C. H.
- Wang, J.
- Wang, M.
- Wang, N. Y.
- Wang, R. G.
- Wang, W.
- Wang, X.
- Wang, Y.
- Wang, Y. F.
- Wang, Z.
- Wang, Z.
- Wang, Z. M.
- Wei, H. Y.
- Wei, L. H.
- Wen, L. J.
- Whisnant, K.
- White, C. G.
- Wong, H. L. H.
- Worcester, E.
- Wu, D. R.
- Wu, Q.
- Wu, W. J.
- Xia, D. M.
- Xie, Z. Q.
- Xing, Z. Z.
- Xu, H. K.
- Xu, J. L.
- Xu, T.
- Xue, T.
- Yang, C. G.
- Yang, L.
- Yang, Y. Z.
- Yao, H. F.
- Ye, M.
- Yeh, M.
- Young, B. L.
- Yu, H. Z.
- Yu, Z. Y.
- Yue, B. B.
- Zavadskyi, V.
- Zeng, S.
- Zeng, Y.
- Zhan, L.
- Zhang, C.
- Zhang, F. Y.
- Zhang, H. H.
- Zhang, J. L.
- Zhang, J. W.
- Zhang, Q. M.
- Zhang, S. Q.
- Zhang, X. T.
- Zhang, Y. M.
- Zhang, Y. X.
- Zhang, Y. Y.
- Zhang, Z. J.
- Zhang, Z. P.
- Zhang, Z. Y.
- Zhao, J.
- Zhao, R. Z.
- Zhou, L.
- Zhuang, H. L.
- Zou, J. H.
- Daya Bay Collaboration
Abstract
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. In this Letter, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method. The measured average flux and spectrum, as well as the flux evolution with the ²³⁹Pu isotopic fraction, are inconsistent with the predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average flux and its evolution but fails to describe the energy spectrum. Altering the predicted inverse-beta-decay spectrum from ²³⁹Pu fission does not improve the agreement with the measurement for either model. The models can be brought into better agreement with the measurements if either the predicted spectrum due to 235U fission is changed or the predicted ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu spectra are changed in equal measure.
Copyright and License
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Funding
Funded by SCOAP3.
Acknowledgement
Daya Bay is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the National Natural Science Foundation of China, the Guangdong Provincial Government, the Shenzhen municipal government, the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory of Particle Physics and Particle Irradiation (Shandong University), the Ministry of Education, Shanghai Laboratory for Particle Physics and Cosmology, the Research Grants Council of the Hong Kong Special Administrative Region of China, the University Development Fund of The University of Hong Kong, the MOE program for Research of Excellence at National Taiwan University, National Chiao-Tung University, and NSC fund support from Taiwan, the U.S. National Science Foundation, the Alfred P. Sloan Foundation, the Charles University Research Center UNCE/SCI/013 in the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the CNFC-RFBR joint research program, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program. We acknowledge Yellow River Engineering Consulting Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. We are grateful for the ongoing cooperation from the China General Nuclear Power Group and China Light and Power Company.
Data Availability
The data in Fig.1 and Fig.4 and the systematic error covariance matrix are used in the fitting formulas, including Eq.7, Eq.9 and Eq.13.
Files
Name | Size | Download all |
---|---|---|
md5:1a5a8578980a65168b433249c63edeb5
|
4.1 kB | Preview Download |
md5:36676d1e2e0fb737a04c5e971b63ef19
|
48.5 kB | Preview Download |
md5:6c837456cc23737dda85470c553ecc33
|
3.4 kB | Preview Download |
md5:32a788fcd5c872892b990394207cdeec
|
73.6 kB | Preview Download |
md5:a2769ad1ff5ecdfe771fb7c38c9b30b7
|
411.2 kB | Preview Download |
md5:2e216823cbaf10d41b30223e79f05527
|
55.6 kB | Preview Download |
md5:bb145dff29e2a1ab17c5176e60fdf152
|
19.4 kB | Preview Download |
md5:f192dd4b1610e52a548271aab0bc8e4a
|
73.6 kB | Preview Download |
md5:cb67cba15c912e2e991035f7550007e9
|
2.6 kB | Preview Download |
Additional details
- ISSN
- 1079-7114
- Ministry of Science and Technology of the People's Republic of China
- United States Department of Energy
- Chinese Academy of Sciences
- National Natural Science Foundation of China
- People's Government of Guangdong Province
- Ministry of Education
- National Taiwan University
- National Yang Ming Chiao Tung University
- National Science and Technology Council
- National Science Foundation
- Alfred P. Sloan Foundation
- Joint Institute for Nuclear Research
- Russian Foundation for Basic Research
- Agencia Nacional de Investigación y Desarrollo
- Shenzhen Municipal Government
- China General Nuclear Power Group
- Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education
- Key Laboratory of Particle Physics and Particle Irradiation (Shandong University), the Ministry of Education
- Shanghai Laboratory for Particle Physics and Cosmology
- Research Grants Council of the Hong Kong Special Administrative Region of China
- Charles University Research Center
- Tsinghua University Initiative Scientific Research Program
- Yellow River Engineering Consulting Co., Ltd.
- China Railway 15th Bureau Group Co., Ltd.
- China Light and Power Company
- SCOAP3