Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California
Abstract
The Sierra Nevada batholith is an ∼600-km-long, NNW-trending composite arc assemblage consisting of a myriad of plutons exhibiting a distinct transverse zonation in structural, petrologic, geochronologic, and isotopic patterns. This zonation is most clearly expressed by a west-to-east variation from mafic to felsic plutonic assemblages. South of 35.5°N, the depth of exposure increases markedly, and fragments of shallow-level eastern Sierra Nevada batholith affinity rocks overlie deeper-level western zone rocks and subjacent subduction accretion assemblages along a major Late Cretaceous detachment system. The magnitude of displacement along this detachment system is assessed here by palinspastic reconstruction of vertical piercing points provided by batholithic and metamorphic pendant structure and stratigraphy. Integration of new and published U-Pb zircon geochronologic, thermobarometric, (U-Th)/He thermochronometric, and geochemical data from plutonic and metamorphic framework assemblages in the southern Sierra Nevada batholith reveal seven potential correlations between dispersed crustal fragments and the Sierra Nevada batholith autochthon. Each correlation suggests at least 50 km of south- to southwest-directed transport and tectonic excision of ∼5–10 km of crust along the Late Cretaceous detachment system. The timing and pattern of regional dispersion of crustal fragments in the southern Sierra Nevada batholith is most consistent with Late Cretaceous collapse above the underplated accretionary complex. We infer, from data presented herein (1) a high degree of coupling between the shallow and deep crust during extension, and (2) that the development of modern landscape in southern California was greatly preconditioned by Late Cretaceous tectonics.
Additional Information
© 2012 Geological Society of America. Received 20 July 2011. Revision received 23 November 2011. Accepted 25 November 2011. This research was supported by National Science Foundation grant EAR-0739071 and by the Gordon and Betty Moore Foundation. This is Caltech Tectonics Observatory Contribution 188. The manuscript benefitted from enlightening discussions with M. Robinson Cecil, George Dunne, Vali Memeti, Elisabeth Nadin, and Scott Paterson and from thoughtful reviews by Jade Star Lackey, John Bartley, and Associate Editor Keith Putirka. We thank Pieter Vermeesch for providing a MATLAB script for multidimensional scaling of U-Pb detrital zircon ages. Ronald Kistler graciously provided samples of north and south tonalites of Vergeles (Gabilan Range).Additional details
- Eprint ID
- 31431
- DOI
- 10.1130/GES00740.1
- Resolver ID
- CaltechAUTHORS:20120511-105321992
- NSF
- EAR-0739071
- Gordon and Betty Moore Foundation
- Created
-
2012-05-11Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field
- Caltech groups
- Caltech Tectonics Observatory, Division of Geological and Planetary Sciences
- Other Numbering System Name
- Caltech Tectonics Observatory
- Other Numbering System Identifier
- 188