Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California
Abstract
The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8–10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ~100 km of this section, structural/petrologic continuity and geochronological data indicate that ≥35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115–110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduction trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronometers that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petrogenetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High-confidence thermochronometric data track a single retrogressing path commencing from widely established solidus conditions at ca. 100 Ma, and traversing through time-temperature space as follows: (1) Sm/Nd garnet ~770–680 °C at ca. 102–95 Ma, (2) U/Pb titanite ~750–600 °C at ca. 102–95 Ma, (3) Ar/Ar hornblende ~570–490 °C at ca. 94–91 Ma, (4) Rb/Sr biotite ~390–260 °C at ca. 90–86 Ma, (5) Ar/Ar biotite ~320–240 °C at ca. 88–85 Ma, and (6) (U-Th)/He zircon ~230–170 °C at ca. 88–83 Ma. Additional stratigraphic constraints place the complex at surface conditions in Paleocene–early Eocene time (ca. 66–55 Ma). Integration of these results with thermobarometric and structural data, including published data on the underlying Rand Schist, reveals a profound tectonic event whereby rapid cooling and exhumation at rates potentially as high as 100s °C/m.y. and >5 mm/yr initiated at ca. 98 Ma and peaked between 96 and 94 Ma. Between 93 and 85 Ma, cooling rates remained high, but decelerated with or without significant exhumation. Subsequent cooling and exhumation rates are poorly constrained but were much slower and ultimately resulted in Paleocene-Eocene surface exposure. Initial rapid exhumation and cooling are hypothesized to have been driven by abrupt flattening in the corresponding segment of the Farallon plate and the resulting tectonic erosion of the underlying mantle lithosphere. Protolith as well as metamorphic pressure-temperature and age constraints on the Rand Schist indicate its rapid low-angle subduction between 93 and 88 Ma. Comparison of the Rand Schist and Tehachapi complex pressure-temperature-time paths in conjunction with structural relations strongly suggest that the schist ascended the equivalent of ~4 kbar relative to the Tehachapi complex by low-angle normal displacement along the Rand fault between 88 and 80 Ma to attain its current underplated structural position. Such extensional tectonism is hypothesized to have been driven by slab rollback during the demise of the southern California region shallow slab segment.
Additional Information
© 2007 Geological Society of America. Manuscript accepted by the Society 13 July 2006. This research was funded by National Science Foundation grants EAR-9526859 and EAR-0087347 (to J.S.), and EAR- 0230383 (to J.S. and K.F.), and the Gordon and Betty Moore Foundation. This is Caltech Tectonic Observatory Contribution number 49. This research benefited from discussions and field excursions with M. Ducea, L.T. Silver, R.K. O'Nions, P.D. Asimow, D.A. Pickett, D.J. Wood, P.J. Wyllie, and J. Eiler. Field, laboratory, and computational assistance by L. Hedges, E. Nadin, and Z. Foster- Saleeby and assistance in manuscript preparation by Kim Klotz are kindly acknowledged. Limited access to private lands held by the Tejon Ranch Company is gratefully acknowledged.Additional details
- Eprint ID
- 20822
- Resolver ID
- CaltechAUTHORS:20101116-085627262
- NSF
- EAR-9526859
- NSF
- EAR-0087347
- NSF
- EAR-0230383
- Gordon and Betty Moore Foundation
- Created
-
2010-11-17Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field
- Caltech groups
- Caltech Tectonics Observatory, Division of Geological and Planetary Sciences
- Series Name
- Geological Society of America Special Paper
- Series Volume or Issue Number
- 419
- Other Numbering System Name
- Caltech Tectonics Observatory
- Other Numbering System Identifier
- 49