Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2017 | Published
Journal Article Open

Better Galactic Mass Models through Chemistry

Abstract

With the upcoming release of the Gaia catalog and the many multiplexed spectroscopic surveys on the horizon, we are rapidly moving into a new data-driven era in the study of the Milky Way's stellar halo. When combined, these data sets will give us a many-dimensional view of stars in accreted structures in the halo that includes both dynamical information about their orbits and chemical information about their formation histories. Using simulated data from the state-of-the-art Latte simulations of Milky-Way-like galaxies, which include hydrodynamics, feedback, and chemical evolution in a cosmological setting, we demonstrate that while dynamical information alone can be used to constrain models of the Galactic mass distribution in the halo, including the extra dimensions provided by chemical abundances can improve these constraints as well as assist in untangling different accreted components.

Additional Information

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0). Received: 29 July 2017 / Revised: 10 August 2017 / Accepted: 11 August 2017 / Published: 21 August 2017. (This article belongs to the Special Issue On the Origin (and Evolution) of Baryonic Galaxy Halos) R.S. is supported by an NSF Astronomy & Astrophysics Postdoctoral Fellowship under grant NSF-1400989. A.W. was supported by a Caltech-Carnegie Fellowship, in part through the Moore Center for Theoretical Cosmology and Physics at Caltech, and by NASA through grant HST-GO-14734 from STScI. Numerical calculations were run on allocations TG-AST130039 & TG-AST150080 granted by the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the NSF, and the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center on allocation SMD-16-7592. Author Contributions: R.S. developed the mass-modeling technique used for this work and generated the mock halos on which tests were performed, presented the work at the conference and wrote this conference proceedings. The high-resolution simulations of the Milky Way used for this work were run by A.W. using code (GIZMO/FIRE) developed by A.W. and P.H. S.S. kindly provided the group finder used in this work and was the original author of the Galaxia resampling code modified for this work by R.S. The authors declare no conflict of interest.

Attached Files

Published - galaxies-05-00043-v2.pdf

Files

galaxies-05-00043-v2.pdf
Files (2.7 MB)
Name Size Download all
md5:f58a762c59489760b5cd2d2bd4d5e6f1
2.7 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 20, 2023