Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 9, 2022 | Accepted Version
Report Open

Fast & accurate randomized algorithms for linear systems and eigenvalue problems

Abstract

This paper develops a new class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized sketching to accelerate subspace projection methods, such as GMRES and Rayleigh--Ritz. This approach offers great flexibility in designing the basis for the approximation subspace, which can improve scalability in many computational environments. The resulting algorithms outperform the classic methods with minimal loss of accuracy. For model problems, numerical experiments show large advantages over MATLAB's optimized routines, including a 100× speedup over gmres and a 10× speedup over eigs.

Additional Information

29 October 2021. Revised: 4 February 2022. JAT acknowledges ONR BRC N00014-1-18-2363 and NSF FRG 1952777. The authors would like to thank Oleg Balabanov, Alice Cortinovis, Ethan Epperly, Laura Grigori, Ilse Ipsen, Daniel Kressner, Gunnar Martinsson, Maike Meier, Florian Schaefer, Daniel Szyld, Alex Townsend, Nick Trefethen, and Rob Webber for valuable discussions and feedback. We are grateful to Zdeněk Strakoš for sharing his insights on Krylov subspace methods and the prospects for sGMRES and sRR.

Attached Files

Accepted Version - NT21-Fast-Accurate-TR.pdf

Files

NT21-Fast-Accurate-TR.pdf
Files (4.8 MB)
Name Size Download all
md5:fe747e693de238662cfb87dbe38b5878
4.8 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 15, 2024