Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 27, 2021 | Submitted
Report Open

Reinforcement Learning for Decision-Making and Control in Power Systems: Tutorial, Review, and Vision


With large-scale integration of renewable generation and distributed energy resources (DERs), modern power systems are confronted with new operational challenges, such as growing complexity, increasing uncertainty, and aggravating volatility. Meanwhile, more and more data are becoming available owing to the widespread deployment of smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. In this paper, we provide a tutorial on various RL techniques and how they can be applied to decision-making in power systems. We illustrate RL-based models and solutions in three key applications, frequency regulation, voltage control, and energy management. We conclude with three critical issues in the application of RL, i.e., safety, scalability, and data. Several potential future directions are discussed as well.

Additional Information

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Attached Files

Submitted - 2102.01168.pdf


Files (864.2 kB)
Name Size Download all
864.2 kB Preview Download

Additional details

August 20, 2023
October 23, 2023