Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2004 | Published
Journal Article Open

Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation

Abstract

We introduce the density functional theory (DFT) local quasicontinuum method: a first principles multiscale material model that embeds DFT unit cells at the subgrid level of a finite element computation. The method can predict the onset of dislocation nucleation in both single crystals and those with inclusions, although extension to lattice defects awaits new methods. We show that the use of DFT versus embedded-atom method empirical potentials results in different predictions of dislocation nucleation in nanoindented face-centered-cubic aluminum.

Additional Information

© 2004 American Physical Society. (Received 2 June 2004; revised manuscript received 30 June 2004; published 27 September 2004) The authors are grateful to the U.S. Department of Defense for support provided through Brown University's MURI Center for the "Design and Testing of Materials by Computation: A Multi-Scale Approach," to the DOE through Caltech's ASCI/ASAP Center for the Simulation of the Dynamic Response of Solids, and for the EAM code provided by Ron Miller and Ellad B. Tadmor (see Ref. 20). M.F. thanks the CSGF for support. R.L.H. thanks NDSEGF for funding.

Attached Files

Published - FagoHayesCarterOrtiz2004.pdf

Files

FagoHayesCarterOrtiz2004.pdf
Files (732.0 kB)
Name Size Download all
md5:0298340176b6af851ed1a615061d1039
732.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023