Published September 4, 2025 | Supplemental material
Journal Article Open

Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping

Buchli, Jonas1 ORCID icon
Tracey, Brendan1 ORCID icon
Andric, Tomislav2, 3 ORCID icon
Wipf, Christopher4
Chiu, Yu Him Justin1
Lochbrunner, Matthias1
Donner, Craig1 ORCID icon
Adhikari, Rana X.4 ORCID icon
Harms, Jan2, 3 ORCID icon
Barr, Iain1
Hafner, Roland1 ORCID icon
Huber, Andrea1
Abdolmaleki, Abbas1 ORCID icon
Beattie, Charlie1 ORCID icon
Betzwieser, Joseph4 ORCID icon
Cabi, Serkan1
Degrave, Jonas1 ORCID icon
Dong, Yuzhu1 ORCID icon
Fritz, Leslie1
Gupta, Anchal4 ORCID icon
Groth, Oliver1 ORCID icon
Huang, Sandy1 ORCID icon
Norman, Tamara1 ORCID icon
Openshaw, Hannah1
Rollins, Jameson4 ORCID icon
Thornton, Greg1
van den Driessche, George1 ORCID icon
Wulfmeier, Markus1 ORCID icon
Kohli, Pushmeet1 ORCID icon
Riedmiller, Martin1 ORCID icon
The LIGO Instrument Team
Abbott, R.4
Abouelfettouh, I.
Adhikari, R. X.4 ORCID icon
Ananyeva, A.4
Appert, S.
Apple, S. K.
Arai, K.4 ORCID icon
Aritomi, N.
Aston, S. M.
Ball, M.
Ballmer, S. W.
Barker, D.
Barsotti, L.
Berger, B. K.
Betzwieser, J.
Bhattacharjee, D.
Billingsley, G.4 ORCID icon
Biscans, S.
Blair, C. D.
Bode, N.
Bonilla, E.
Bossilkov, V.
Branch, A.
Brooks, A. F.4 ORCID icon
Brown, D. D.
Bryant, J.
Cahillane, C.
Cao, H.
Capote, E.
Clara, F.
Collins, J.
Compton, C. M.
Cottingham, R.
Coyne, D. C.4 ORCID icon
Crouch, R.
Csizmazia, J.
Cumming, A.
Dartez, L. P.
Davis, D.4 ORCID icon
Demos, N.
Dohmen, E.
Driggers, J. C.
Dwyer, S. E.
Effer, A.
Ejlli, A.
Etzel, T.4
Evans, M.
Feicht, J.4
Frey, R.
Frischhertz, W.
Fritschel, P.
Frolov, V. V.
Fuentes-Garcia, M.4 ORCID icon
Fulda, P.
Fyffe, M.
Ganapathy, D.
Gateley, B.
Gayer, T.
Giaime, J. A.
Giardina, K. D.
Glanzer, J.4
Goetz, E.
Goetz, R.
Goodwin-Jones, A. W.4 ORCID icon
Gras, S.
Gray, C.
Griffith, D.4
Grote, H.
Guidry, T.
Gurs, J.
Hall, E. D.
Hanks, J.
Hanson, J.
Heintze, M. C.
Helmling-Cornell, A. F.
Holland, N. A.
Hoyland, D.
Huang, H. Y.
Inoue, Y.
James, A. L.4 ORCID icon
Jennings, A.
Jia, W.
Jones, D. H.
Kabagoz, H. B.
Karat, S.4
Karki, S.
Kasprzack, M.4 ORCID icon
Kawabe, K.
Kijbunchoo, N.
King, P. J.
Kissel, J. S.
Komori, K.
Kontos, A.
Kumar, Rahul
Kuns, K.
Landry, M.
Lantz, B.
Laxen, M.
Lee, K.
Lesovsky, M.4
Villarreal, F. Llamas
Lormand, M.
Loughlin, H. A.
Macas, R.
MacInnis, M.
Makarem, C. N.4 ORCID icon
Mannix, B.
Mansell, G. L.
Martin, R. M.
Mason, K.
Matichard, F.
Mavalvala, N.
Maxwell, N.
McCarrol, G.
McCarthy, R.
Mc-Clelland, D. E.
McCormick, S.
McRae, T.
Mera, F.
Merilh, E. L.
Meylahn, F.
Mittleman, R.
Moraru, D.
Moreno, G.
Mullavey, A.
Nakano, M.4 ORCID icon
Nelson, T. J. N.
Neunzert, A.
Notte, J.
Oberling, J.
O'Hanlon, T.
Osthelder, C.4
Ottaway, D. J.
Overmier, H.
Parker, W.
Patane, O.
Pele, A.4
Pham, H.
Pirello, M.
Pullin, J.
Quetschke, V.
Ramire, K. E.
Ransom, K.
Reyes, J.
Richardson, J. W.
Robinson, M.
Rollins, J. G.4 ORCID icon
Romel, C. L.
Romie, J. H.
Ross, M. P.
Ryan, K.
Sadecki, T.
Sanchez, A.
Sanchez, E. J.4
Sanchez, L. E.4 ORCID icon
Savage, R. L.
Schaetzl, D.4
Schiworski, M. G.
Schnabel, R.
Schofield, R. M. S.
Schwartz, E.
Sellers, D.
Shaffer, T.
Short, R. W.
Sigg, D.
Slagmolen, B. J. J.
Soike, C.
Soni, S.
Srivastava, V.
Sun, L.
Tanner, D. B.
Thomas, M.
Thomas, P.
Thorne, K. A.
Todd, M. R.
Torrie, C. I.4
Traylor, G.
Ubhi, A. S.
Vajente, G.4 ORCID icon
Vanosky, J.
Vecchio, A.
Veitch, P. J.
Vibhute, A. M.
von Reis, E. R. G.
Warner, J.
Weaver, B.
Weiss, R.
Whittle, C.4 ORCID icon
Willke, B.
Wipf, C. C.4
Wright, J. L.
Xu, V. A.
Yamamoto, H.4 ORCID icon
Zhang, L.4 ORCID icon
Zucker, M. E.4 ORCID icon
  • 1. Google DeepMind
  • 2. ROR icon Gran Sasso Science Institute
  • 3. ROR icon Gran Sasso National Laboratory
  • 4. ROR icon California Institute of Technology

Abstract

Improved low-frequency sensitivity of gravitational wave observatories would unlock study of intermediate-mass black hole mergers and binary black hole eccentricity and provide early warnings for multimessenger observations of binary neutron star mergers. Today's mirror stabilization control injects harmful noise, constituting a major obstacle to sensitivity improvements. We eliminated this noise through Deep Loop Shaping, a reinforcement learning method using frequency domain rewards. We proved our methodology on the LIGO Livingston Observatory (LLO). Our controller reduced control noise in the 10- to 30-hertz band by over 30x and up to 100x in subbands, surpassing the design goal motivated by the quantum limit. These results highlight the potential of Deep Loop Shaping to improve current and future gravitational wave observatories and, more broadly, instrumentation and control systems.

Copyright and License

© 2025 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Acknowledgement

We thank J. Dean for strategic help and inspiration at the start of the project.

Funding

The authors gratefully acknowledge the support of the US National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council of the UK and the Max Planck Society for support of the construction of Advanced LIGO. Additional support for Advanced LIGO was provided by the Australian Research Council. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the NSF and operates under cooperative agreement no. PHY-18671764464. Advanced LIGO was built under grant no. PHY-18680823459.

Contributions

R.X.A., J.Bu., S.C., J.H., M.R., and B.T. conceived the project. R.X.A., J.Bu., C.D., A.H., J.H., and B.T. led the project. T.A., R.X.A., I.B., J.Bu., J.Be., C.D., G.v.d.D., J.D., A.G., J.H., M.L., B.T., G.T., and C.W. developed the physics simulations. T.A., I.B., J.Bu., Y.H.J.C., C.D., J.D., M.L., B.T., and C.W. integrated the physics simulations with the learning framework. A.A., J.Bu., R.H., S.H., M.L., M.W., and B.T. developed the learning framework and performed learning experiments. C.D., T.N., J.R., and C.W. developed the real-time neural network interface. R.X.A., J.Be., J.Bu., C.D., A.G., B.T., and C.W. integrated the real-time neural network with the control system and ran experiments on LLO and the California Institute of Technology 40m prototype. C.B., J.Bu., Y.H.J.C., C.D., Y.D., O.G., M.L., and C.W. developed data curation tools. R.X.A., I.B., J.Bu., Y.H.J.C., B.T., and C.W. developed and ran the data analysis. L.F., P.K., H.O., and M.R. consulted for the project. T.A., R.X.A., J.Bu., J.H., B.T., and C.W. wrote the manuscript. The LIGO Instrument Team maintains and runs the LIGO Observatory.

Data Availability

The learning algorithm used in the actor-critic RL method is MPO (18), a reference implementation of which is available under an open-source license (22). Additionally, the software libraries launchpad (23), dm env (24), Jax/Haiku (25), and reverb (26) were used, which are also open source. Simulations were implemented in Lightsaber (27) and advLigoRTS (19). The identified LLO model and experimental data are available at (28).

Supplemental Material

Supplementary Text; Figs. S1 to S16; Tables S1 to S3; References (2969) (PDF)

Files

science.adw1291_sm.pdf
Files (15.2 MB)
Name Size Download all
md5:236e4be204592c8a3e0679d1cde365b5
15.2 MB Preview Download

Additional details

Created:
September 6, 2025
Modified:
September 11, 2025