Waveguide modes in sparse III-V nanowire arrays for ultra-broadband tunable perfect absorbers
Abstract
Design of perfect absorbers and emitters has been a primary focus of the metamaterials community owing to their potential to enhance device efficiency and sensitivity in energy harvesting and sensing applications, specifically photovoltaics, thermal emission control, bolometers and photodetectors, to name a few. While reports of perfect absorbers/emitters for a specific frequency, wavevector, and polarization are ubiquitous, a broadband and polarization- and angle-insensitive perfect absorber remains a particular challenge. In this work, we report on directed optical design and fabrication of sparse III-V nanowire arrays as broadband, polarization- and angle-insensitive perfect absorbers and emitters. Specifically, we target response in the UV-Vis-NIR and NIR-SWIR-MWIR via two material systems, InP (E_g=1.34 eV) and InSb (E_g=0.17 eV), respectively. Herein, we present results on InP and InSb nanowire array broadband absorbers, supported by experiment, simulation and analytic theory. Electromagnetic simulations indicate that, with directed optical design, tapered nanowire arrays and multi-radii nanowire arrays with 5% fill fraction can achieve greater than 95% broadband absorption (λInP=400-900nm, λInSb=1.5-5.5µm), due to efficient excitation and interband transition-mediated attenuation of the HE11 waveguide mode. Experimentally-fabricated InP nanowire arrays embedded in PDMS achieved broadband, polarization- and angle-insensitive 90-95% absorption, limited primarily by reflection off the PDMS interface. Addition of a thin, planar VO_2 layer above a sparse InSb nanowire array enables active thermal tunability in the infrared, effecting a 50% modulation, from 87% (insulating VO_2) to 43% (metallic VO_2) average absorption. These concepts and results along with photovoltaic and other optical and optoelectronic device applications will be discussed.
Additional Information
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).Additional details
- Eprint ID
- 87582
- Resolver ID
- CaltechAUTHORS:20180706-085908720
- Created
-
2018-07-06Created from EPrint's datestamp field
- Updated
-
2021-11-15Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 9920