Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2006 | Submitted
Journal Article Open

The Superpolynomial for Knot Homologies

Abstract

We propose a framework for unifying the sl(N) Khovanov– Rozansky homology (for all N) with the knot Floer homology. We argue that this unification should be accomplished by a triply graded homology theory that categorifies the HOMFLY polynomial. Moreover, this theory should have an additional formal structure of a family of differentials. Roughly speaking, the triply graded theory by itself captures the large-N behavior of the sl(N) homology, and differentials capture nonstable behavior for small N, including knot Floer homology. The differentials themselves should come from another variant of sl(N) homology, namely the deformations of it studied by Gornik, building on work of Lee. While we do not give a mathematical definition of the triply graded theory, the rich formal structure we propose is powerful enough to make many nontrivial predictions about the existing knot homologies that can then be checked directly. We include many examples in which we can exhibit a likely candidate for the triply graded theory, and these demonstrate the internal consistency of our axioms. We conclude with a detailed study of torus knots, developing a picture that gives new predictions even for the original sl(2) Khovanov homology.

Additional Information

© 2006 Taylor & Francis. We are grateful to P. Etingof, B. Gornik, V. Kac, M. Khovanov, C. Manolescu, P. Ozsváth, A. Schwarz, C. Taubes, C. Vafa, and Z. Szabó for valuable discussions. N.D. was partially supported by NSF grant #DMS-0405491 and a Sloan Fellowship. This work was conducted during the period S.G. served as a Clay Mathematics Institute Long-Term Prize Fellow. J.R. was partially supported by an NSF Postdoctoral Fellowship.

Attached Files

Submitted - 0505662.pdf

Files

0505662.pdf
Files (471.0 kB)
Name Size Download all
md5:fde0e1ed0f498910be43eca9d195c472
471.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023