Predicting Action Content On-Line and in Real Time before Action Onset - an Intracranial Human Study
Abstract
The ability to predict action content from neural signals in real time before the action occurs has been long sought in the neuroscientific study of decision-making, agency and volition. On-line real-time (ORT) prediction is important for understanding the relation between neural correlates of decision-making and conscious, voluntary action as well as for brain-machine interfaces. Here, epilepsy patients, implantded with intracranial depth microelectodes or subdural grid electrodes for clinical purposes, participated in a "matching-pennies" game against an opponent. In each trial, subjects were given a 5 s countdown, after which they had to raise their left or right hand immediately as the "go" signal appeared on a computer screen. They won a fixed amount of money if they raised a different hand than their opponent and lost that amount otherwise. The question we here studied was the extent to which neural precursors of the subjects' decisions can be detected in intracranial local field potentials (LFP) prior to the onset of the action. We found that combinded low-frequency (0.1-5 Hz) LFP signals from 10 electrodes were predictive of the intended left-/right-hand movements before the onset of the go signal. Our ORT system predicted which hand the patient would raise 0.5 s before the go signal with 68% accuracy in two patients. Based on these results, we constructed an ORT system that tracked up to 30 electrodes simultaneously, and tested it on retrospective data from 7 patients. On average, we could predict the correct hand choice in 83% of the trials, which rose to 92% if we let the system drop 3/10 of the trials on which it was less confident. Out system demonstrates-for the first time-the feasibility of accurately predicting a binary action on single trials in real time for patients with intracranial recordings, well before the action occurs.
Additional Information
We thank Ueli Rutishauser, Regan Blythe Towel, Liad Mudrik and Ralph Adolphs for meaningful discussions. This research was supported by the Ralph Schlaeger Charitable Foundation, Florida State University's "Big Questions in Free Will" initiative and the G. Harold & Leila Y. Mathers Charitable Foundation. Poster M82: A System for Predicting Action Content On-Line and in Real Time before Action Onset in Humans – an Intracranial Study. December 03, 2012. Part of the Poster Session and Reception.Attached Files
Published - Maoz-etal_NIPS2012.pdf
Supplemental Material - Maoz-etal_NIPS2012_SupplMovie.avi
Supplemental Material - Maoz-etal_NIPS2012_SupplMovie.mp4
Files
Name | Size | Download all |
---|---|---|
md5:0304b379ed0da7b84e7f080479a7df50
|
4.8 MB | Download |
md5:499f0e02a0c46df50fb80d052a5c4ef0
|
532.1 kB | Preview Download |
md5:418e519d6f6644ef15b0cbaf75a8ab16
|
2.1 MB | Download |
Additional details
- Alternative title
- Poster: A System for Predicting Action Content On-Line and in Real Time before Action Onset in Humans – an Intracranial Study
- Eprint ID
- 40703
- Resolver ID
- CaltechAUTHORS:20130816-103411425
- Ralph Schlaeger Charitable Foundation
- Florida State University
- G. Harold and Leila Y. Mathers Charitable Foundation
- Created
-
2013-03-04Created from EPrint's datestamp field
- Updated
-
2020-03-05Created from EPrint's last_modified field
- Caltech groups
- Koch Laboratory (KLAB)