Planar optical components and systems based on dielectric metasurfaces
Abstract
Miniaturized optical systems with planar form factors and low power consumption have many applications in wearable and mobile electronics, health monitoring devices, and as integral parts of medical and industrial equipment. Flat optical devices based on dielectric metasurfaces introduce a new approach for realization of such systems at low cost using conventional nanofabrication techniques. In this talk, I will present a summary of our recent work on dielectric metasurfaces that enable precise control of both polarization and phase with large transmission and high spatial resolution. Optical metasurface components such as high numerical aperture lenses, efficient wave plates, components with novel functionalities, and their potential applications will be discussed. I will also present the results of our efforts on developing multi-wavelength and dispersion engineered metasurfaces, as well as conformal, flexible, and tunable metasurfaces. Furthermore, by using metasurface cameras and planar retroreflectors as examples, I will introduce a vertical on-chip integration platform enabled by vertical stacking of multiple metasurfaces and active optoelectronic components. This vertical integration scheme introduces a new architecture for the on-chip integration of conventional and novel optical systems and enables their low-cost manufacturing.
Additional Information
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).Additional details
- Eprint ID
- 87455
- Resolver ID
- CaltechAUTHORS:20180628-153726461
- Created
-
2018-07-03Created from EPrint's datestamp field
- Updated
-
2021-11-15Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 10113