Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 1, 2016 | Supplemental Material + Accepted Version
Journal Article Open

Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease

Abstract

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.

Additional Information

© 2016 Elsevier Inc. Received: June 29, 2016; Received in revised form: October 12, 2016; Accepted: November 10, 2016; Published: December 1, 2016. Supplemental Information includes seven figures and one table and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2016.11.018. Author Contributions: Conceptualization, T.R.S., C.E.S., M.-F.C., and S.K.M.; Formal Analysis, J.W.D., S.J., and C.C.; Investigation, T.R.S., T.T., G.G.S., Z.E.I., and S.R.; Resources, A.K. and K.M.S.; Writing - Original Draft, T.R.S. and S.K.M.; Writing - Review and Editing, all authors; Supervision, V.G., R.K.-B., P.W.-S., R.K., and S.K.M.; Funding Acquisition, T.R.S., V.G., M.-F.C., A.K., P.W.-S., R.K., and S.K.M. We thank E. Hsiao, M. Sampson, and the S.K.M. laboratory for helpful critiques. We are grateful to K. Ly, A. Maskell, and M. Quintos for animal husbandry and Y. Garcia-Flores, G. Ackermann, G. Humphrey, and H. Derderian for technical support. Imaging and analysis was performed in the Caltech Biological Imaging Facility, with the support of the Caltech Beckman Institute and the Arnold and Mabel Beckman Foundation. T.R.S. is a Larry L. Hillblom Foundation postdoctoral fellow. This project was supported by funds from the Knut and Alice Wallenberg Foundation and Swedish Research Council to P.W.-S.; a gift from Mrs. and Mr. Larry Field to A.K.; the Heritage Medical Research Institute to V.G. and S.K.M.; and NIH grant NS085910 to S.K.M.

Attached Files

Accepted Version - nihms830352.pdf

Supplemental Material - 10.1016-j.cell.2016.11.018Figure.ppt

Files

nihms830352.pdf
Files (12.4 MB)
Name Size Download all
md5:26a7a5fb7db6c6cd8e23c53b88755a69
11.1 MB Download
md5:99a0619240ed23507399a105732eec7c
1.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023