Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2021 | Submitted
Journal Article Open

On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations


We present a novel method of analysis and prove finite time asymptotically self‐similar blowup of the De Gregorio model [13, 14] for some smooth initial data on the real line with compact support. We also prove self‐similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on ℝ or S¹ for Hölder‐continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self‐similar singularity into the problem of establishing the nonlinear stability of an approximate self‐similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self‐similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well‐posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations.

Additional Information

© 2021 Wiley Periodicals LLC. Issue Online: 13 April 2021; Version of Record online: 12 April 2021. The authors would like to acknowledge the generous support from the National Science Foundation under Grant No. DMS-1613861.

Attached Files

Submitted - 1905.06387.pdf


Files (1.2 MB)
Name Size Download all
1.2 MB Preview Download

Additional details

August 20, 2023
October 19, 2023