Published July 18, 2007 | Version Accepted Version + Supplemental Material
Journal Article Open

Inorganic−Organic Hybrid Luminescent Binary Probe for DNA Detection Based on Spin-Forbidden Resonance Energy Transfer

Abstract

We describe the design of new fluorescent binary probe sensors for DNA detection based on spin-forbidden resonance energy transfer (SF-RET). Binary probes consist of a donor and acceptor fluorophores that are attached to two different oligonucleotides and serve as a resonance energy transfer (RET) donor−acceptor pair when hybridized to adjacent sites of a target sequence. In the absence of target, excitation of the donor results in fluorescence only from the donor, but when the probes hybridize to the target, the fluorophores are brought into close proximity favoring RET, yielding fluorescence mainly from the acceptor fluorophore. These new binary probes use the metal complex Ru(bpy')(DIP)_2^(2+) as the energy donor and an organic fluorophore (Cy5) as the energy acceptor. Energy transfer from the MLCT state of the Ru complex to singlet Cy5 is spin forbidden and produces a delayed fluorescence of Cy5. This paper demonstrates that fluorescence delay of Cy5 can be used to time resolve the emission of the probe from the intense fluorescence background of a model system for cellular background; this provides the reported system to overcome intense autofluorescence, an important and general advantage over "classical" spin-allowed steady-state probes.

Additional Information

© 2007 American Chemical Society. Received March 12, 2007. Publication Date (Web): June 26, 2007. This work was supported by the Center of Excellence in Genomic Science Grant P50 HG002806 from the NIH and by the NSF under grant NSF CHE-0415516. J.K.B. thanks the NIH (GM33309) for financial support.

Attached Files

Accepted Version - nihms122794.pdf

Supplemental Material - ja0717257si20070523_125220.pdf

Files

ja0717257si20070523_125220.pdf

Files (2.1 MB)

Name Size Download all
md5:41f4a3372eea366043e44352ab743e31
1.4 MB Preview Download
md5:64ece1ca1e296ddc3e6016b4f004143b
746.5 kB Preview Download

Additional details

Identifiers

PMCID
PMC2747585
Eprint ID
64808
DOI
10.1021/ja0717257
Resolver ID
CaltechAUTHORS:20160226-135926560

Related works

Describes
10.1021/ja0717257 (DOI)

Funding

NIH
P50 HG002806
NSF
CHE-0415516
NIH
GM33309

Dates

Created
2016-02-29
Created from EPrint's datestamp field
Updated
2021-11-10
Created from EPrint's last_modified field